CPS311: COMPUTER ORGANIZATION

An Example of A MIPS Program Using Procedures and Parameters

This module implements a procedure (solve) that computes the roots of a
quadratic equation that has integer roots, returning them to the caller.

The
the

WNEFES

arguments are the coefficients of the quadratic equation (input) plus
two roots (output). It also returns a status code to the caller:

Computation successful and root values are valid

Roots are not integers (roots values are truncated)

Roots are complex (root values invalid)

Overflow occurred during computation (root values invalid)

Register usage:

Parameters: $4

A (by value)

$5 = B (by value)
$6 = C (by value)
$7 = first root (by reference)
$8 = second root (by reference)

Return value: $2
Temporaries: $2, $3

%k %k
%k %k

This version of the program does not incorporate overflow handling
code. It will crash if overflow occurs in computing the discriminant.

R. Bjork - written 2/1999 last revised 9/2019

#
#

HOH HH R

The .section assembler directive is used to break a program into
sections. Executable code goes in the .text section.

.section .text
*** ENTRY PROTOCOL STARTS HERE ****

Each procedure needs to have its entry point declared as a label; if
it is called from outside this module its entry point must also be
declared as a global symbol (for the linker). The name should

also be declared by a .ent directive (for the debugger).

.ent solve
.globl solve

solve:

H R R HH R R KRB RR

Upon entry, a non-leaf procedure must allocate a frame on the
stack, and save its parameters and return address, as well as any
callee-saved registers it intends to use. (None in this case)
The frame may also be used to hold local variables. (None in this
case) The size of the frame must be a multiple of 16

The .frame and .mask directives provides information for the debugger
about the structure of the frame.

The first argument of .frame indicates what register is used to point
to the frame (either the stack pointer or some other register set
aside for that purpose); the second gives the size of the frame, and
the third argument indicates what register holds the return address
for the procedure (almost always $31).

.frame $sp, 32, $31

The mask directive specifies what registers are saved in the stack
frame, and where the register save area begins relative to the
start of the frame. The first argument is a bit mask with 1's
in bit positions corresponding to registers that are saved. Only
registers in the callee saved set ($16 and up) normally appear in
the mask. (The only register this procedure needs to save in this
group is the return address - $31). The second argument indicates
the offset from the high end of the frame ($sp + size) to the slot
where the highest numbered register specified in the mask is saved.
In this case, $31 is saved 24 prior to the high end of the frame,
so the offset is -24. (Note that it is stored to 8(#sp), because
32 - 24 =8.)

.mask 0x80000000, -24
The code that follows actually creates the frame and saves the
registers in it.

addi $sp, -32

sw $31, 8($sp)

sw $4, 12($sp)

sw $5, 16($sp)

sw $6, 20($sp)

sw $7, 24($sp)

sw $8, 28($sp)

*** ENTRY PROTOCOL ENDS HERE ***

/* Compute the discriminant (put in $2). Registers already contain
* the correct parameters

*/

jal compute_discr

/* Test for negative discriminant */
slt $3, $2, %0

beq $3, $0, d_ok # Non-negative, so go on
addi $2, %0, 2 # Status value for complex roots
b fini # Exit
d_ok:
/* Compute square root of discriminant (put in $2) */
add $4, $2, %0 # Put discriminant in $4 as parameter
jal compute_sqrt # $2 now contains sqrt(discriminant)

/* Compute the roots */

lw $4, 12(%sp) # First parameter = A
w $5, 16($sp) # Second parameter = B
add $6, %0, $2 # Third parameter = sqrt(discriminant)

jal compute_roots # $2 and $3 now contain the roots

/* Save the roots in location specified by caller */

w $7, 24($sp) # Restore return parameter addresses
1w $8, 28(%sp)

sw $2, 0($7) # Store first root

sw $3, 0(%$8) # Store second root

/* Check to be sure they are integers - if not, status code will
* indicate that a warning about truncation is needed.

*/

w $4, 12(%sp) # First parameter = A
w $5, 16($sp) # Second parameter = B
w %6, 20($sp) # Third parameter = C
add $7, $2, %o # Fourth parameter = first root
add $8, $3, $0 # Fifth parameter = second root
jal test_roots # $2 contains @ if roots OK, 1 if not

*** EXTIT PROTOCOL STARTS HERE ***

/* Exit protocol for solve. When this point is reached, $2 must

* contain the status code to be returned to the caller
*

*/

Upon exit, a non-leaf procedure must restore its return address and
any callee-saved registers from the stack frame and then deallocate
the frame. (The parameters need not be restored).

fini:
1w $31, 8($sp)

addi $sp, 32
Return to caller
jr $31
Each procedure must end with a .end directive
.end solve
*** EXIT PROTOCOL ENDS HERE ***
/*
* The following local routine computes the discriminant.
*
* Parameters: $4 = A
* $5 = B
* $6 = C
*

Return value: $2

As a local routine, its name does not need to be declared global, and
as a leaf routine, it does not need to save anything on the stack.
A frame directive with a size of @ indicates no frame.

.ent compute_discr
.frame $sp, 0, $31

compute_discr:

mulo $2, $5, $5 # Pseudoinstruction. Assembler generates code to
put 32-bit product in $2; check for overflow and
raise an exception if one occurs. #2 = B*B

addi $3, %0, 4 # $3 =14

mulo $3, $3, $4 # $3 = 4*A - overflow checked

mulo $3, $3, $6 # $3 = 4*AC - overflow checked

sub $2, $2, $3 # $2 = B*B-4AC = discriminant - overflow checked

jr $31

.end compute_discr

N
*

The following local routine computes the integer square root of the
discriminant.

Parameter: $4 = discriminant
Return value: $2 = integer square root (truncated if need be)

Method: Successive testing of individual bits, starting with
2715 and working down to 2/0@

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

*
~

.ent compute_sqgrt
.frame $sp, 0, $31

compute_sqrt:

add $2, %0, %0 # guess at square root @ - initially @
ori $3, $0, 0x8000 # bit mask for trial bit

sqrt_loop:

or $2, $2, $3 # or in trial bit

mul $5, $2, $2 # test to see if guess is now too big
slt $5, %4, $5

beq $5, $@, bit_ok

xor $2, $2, $3 # set trial bit back to 0

bit_ok:

srl $3, $3, 1# move on to next bit

bne $3, $0, sqrt_loop

jr $31
.end compute_sqrt
/*
The following local routine computes the roots.

*

*

* Parameters: $4 = A

* $5 =B

* $6 = sgrt(discriminant)
* Return values: $2 and $3 = two roots

*

*/

.ent compute_roots
.frame $sp, 0, $31

compute_roots:

add $4, $4, %4 # $4 = 2*A

sub $5, $0, $5 # $5 = -B - overflow checked

sub $2, $5, $6 # $2 = -B - sgrt(discriminant) - oveflow checked
div $2, $2, $4 # $2 = first root

add $3, $5, $6 # $3 = -B + sgrt(discriminant) - overflow checked
div $3, $3, $4 # $3 = second root

jr $31

.end compute_roots

/*

* The following local routine tests the roots to be sure they are
* integers

*

* Parameters: $4 = A

* $5 = B

* $6 = C

* $7 = first root

* $8 = second root

* Return value: $2 = 0 if roots are integers, 1 if not

*

* Method - verify that A * sum of roots = -B, A * product = C
*

*/

.ent test_roots
.frame $sp, 0, $31

test_roots:

add $2, $7, $8 # $2 = sum of roots

mul $2, $2, $4 # $2 = A * sum of roots

add $2, $2, $5 # $2 will be @ iff A*sum of roots = -B
bne $2, $0, not_int

mul $2, $7, $8 # $2 = product of roots

mul $2, $2, $4 # $2 = A * product of roots

sub $2, $2, %6 # $2 will be @ iff A*prod of roots = C
bne $2, $0, not_int

jr $31 # Return with $2 = @ - roots OK
not_int:

addi $2, %0, 1

jr $31 # Return with $2 = 1 - roots not OK

.end test_roots

